Arduino Activities
with the Intel Galileo

Paul Chubb

©Copyright Paul Chubb, 2014.

Released under Creative Commons Attribution Share alike 3.0.
Galileo in glasses image from a photo by Megan Smith, CC-By-SA
Galileo PCB from a photo on Arduino.cc, CC-By-SA.

All other images are either public domain, original work of the author or are

labelled according to their specific licensing arrangement.

In creating a work like this, the author is well aware that in many cases they
are building on the understandings and work of others freely shared on the
Internet. The author acknowledges the contributions of the many in the Arduino

communities.

All trademarks remain the property of their respective holders, and are used
only to directly describe the products being used in these activities. Their use in
no way indicates any relationship between Paul Chubb and the holders of said
trademarks.

Table of Contents

] 501 7o LD Tt T) o WU 5
Hardware and SOfEWATE............oovviiiiiiiiiiiieiieeee eee e eeaeeeeeeeaaaaaaeees 6
Hardware ReqUITEIMENtS...............ovvvviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeetceeeeeeeeeeeeeeeeeeeeeeeessstanaaaeeesrsans 6
Software ReqUirements...........cooooiiiiiiiiiiiecieeeeee e e e e e e e e e e e e e e e e aaa e aa 6
PNl sy IR = 1 01 SRR 7
T4 6131 0 P 1 [P 7

L8 =3 T) D1 B TSR 7
SOTEWATE SKEELCH. . ..uuiiiiiiiiiiiiieeeeeee ettt ree e e e e e e eeeeeaaeeeeesersass bt aaeaeeeeaeens 7
OPETALIONS. ...evvveiriiiiiceieeeeeeeeeeeeeeeeeeeeeeee it eeeeeeeeeeeaeeeeseessessssstaretaaaaeeseeaesaeessssssssssssrssrnnnnsenes 7
=] 7] o 1= T TR 7
FUIICHIONIS. ..ottt ettt e e ettt e e e e e s et eeeeeseeataesatnessaessanesstnessnnenes 8
Activity 2: RGB BIINK......uuiiie ittt e e e e e e e e e e e e e e e e e aaa e e e et e e e aaaanas 9
S Td 6131 4 T 1 [P 9
LED RESISEOIS. .cieeittiiiiiiiiiiiiiee ettt eeeeee e e e ettt er e e e e ettt eeeeeeeatbtaeeeseastanaeesssssnnnsessssssnnnaeeesssrnnaees 9
RGB LEDS....outuuiiiieeiiieeiieeeeeeeeeeee ettt ettt et e e ettt eeeeeeeeeeaeaeaaeeesasassaaeesesteessaraneenes 10
SOTEWATE SKEECH. ...ueeiiiiiiiiiiiieeeeeee ettt e e e e e eeeeaeeeeereeees st areeeeeeeaaaaanees 10

10 0123 iz 1 (o) o V- J PPN 10
FUIICHIONIS ... et e et ee e e e e etaee e e e e e aateeeeeeaataeeeesseraanaeeanes 10
Activity 3: Counting DY CoOLOUIS.uuuuieiiiieeiiiiiieeeeeeeeecceeeee e e e e e e e e e e eeeeeeer e e e saraeeesareeesssranss 11
SCNEINIATIC. ..vvvvtiiieeeeeee e et e et e e e e e e e e e e e e e ee et eeeeeeeeeeeaaeeeaeaaaa e e aat e aeattaeerarraaaes 11
SOTEWATE SKEECH. . .uueeiiiiiiiiiiiieeeeee et ee e e e e eeeeaeeeeeeeeess st nneeeeeaeasaaanees 12
Bitwise OPerations........cccceiiiiiiiiiiiiiieieeeeeee e e e e e e e eee e ee e e e e e e eeeeaeaeeeeeaeeesannnnesasaaaaaearannas 12

10 0123 iz 1 (o) o V- J RPN 12
Pulse Width Modulation (PWIM).......cooviiiiiiiiiiiieee et e et e e e et e e e s eeean 13
FUNCHIONS. ..ottt et e e ee et e e e e e e et e e rateeeereeeanas 13
Activity 4: MOoOd LamIP......coooiiiiiiiiiiiiiciiiieee e et cerreee e e e eeeeeaeeeeeeeeeaa e aeaeeaeeerans 14
SCEINIATIC. ..vvvvviiceeeeeee e et e et e e e e e e et e e e e e eee s rreeeeeeeeaaaeeeaeraaa e e artaeeeabtneerartaaaes 14
SOTEWATE SKEECH. . .eeeiiiiiiiiiiiieeeeeee ettt e e e e e eeeeaeeeeereeees st reeeeeeeaaaaanees 15

[0 0123 iz 1 10} o V- J SRR 15
FUIICHIONIS. ...t e e et ee e e e e et aee e e e e e aataeeeeeeeataeeeessrrsaneeeees 15
Activity 5: Light SWitChing........ooovviiiiiiiiiiiei et e e e e e e e e araaes 17
SCEINIATIC. ..vvvvtiiieeeeeee e e et e e e e e e e e e e e e eee e reaeeeeeeeeaaeeaaaraaa e e aat e aeattneararraaaes 17
PUSH BUBEOIIS ..ottt ettt e e ettt e e e eeeeeaaeeeaeestneessareeees 17
Pull up and pull doOWn reSIiStOrS.......cceeeieeiiiiiiiieeeeeeee e e e e e e e e e e e e e e e e e aaaa s 18
SOFEWATE SKELCH.....uvniiiiiiiee e e et e e e e e et ee e e e e e et e eeseeaaanes 18
DEDOUNCINIE. ..ottt ree e e e e e eeeeeeeeeeeeeee e eaaabaaa e aaaaaaaaaaaassssaneessrnnnaees 18

O PEIALIONS. ...eeiiiiiiiiiieieieee et e e eeeeeeee ettt eeeeeeeeeeeeeaaaeeeesesssssstana i aaaaaaaeaaeaaessssssssssssnnnnnnnnneses 18

L O 0 et 103 s 1= SRR URSUPNS 19
Activity 6: INfrared ALArM............oeiiiiiiiiii i eeeeeaaan e eas 20
1o 4 1=3 04 V=1 TP OO PPURRNt 20
SOFEWATE SKELCH....uueniiiiiiiiice et e et e e e e e et ee e e e e e eb e e e seaaaanes 20

[0 012z 1 (o) o V= J PR U PPNt 20
PIEZO BUZZEIS.....cconeiieieeee ettt et e et e e et e e eeaa e ranaaan 20

L O 0 et 103 s 1= SR RRUPNE 21
Activity 7: LED DiSPLay....cccceceiiiiiiiiiiiiitieeeee et e ee ettt e e e e e e e e e e e e e e e e e e s s nsnssnnsassessnnnnneeas 22
1o 4 1=3 04 V=1 TP OO PPRRNt 22

Paul Chubb 3

7 SeGMENT DISPLAYS. ..uuuuuiiiieeeiiiiii e cecrr e e e e e e e e e e e e et et e eeeaaeeeeaaaeeasererararrr e ranannns 22

SOTEWATE SKEECH. .. .ueiiiieiiiieeeeeeeee ettt rrree e e e e eeeeeeeeeeeeeees st aeeeeeaaaaaaaeees 23

B =0 013 1 0 TSPt 23
OPETALIONS. ...cvvvviiiiiiieiieeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeaaaereererassattar i aaeeeeseeessssesesssssrssstannnnnnneeses 23
O Ued (o) 0 1= S 23
ACEIVILY 8: IMATGUEE.....ceiiiiiiiieeeee e e e e e e e e eeeeeeee et reeeeeeeeeeeeeeeeeeeeessaaassaanaaaaaaasaeaaaeaassssssssssessnnnnen 24
1o 1=3 00 F= 1 (U PP PRt 24
SOfEWATE SKEUCH. .. .ucieeiiiiiiiieeeeeeeeecceee ettt rrere e e e e eeeeeeeeeeeeereassaaraeeesasanaeees 24
OPEIALIONS. ...evvvviiiiiiieiiieeeeeeeeeeeeeeeeeerre et reeeeeeeeeeeeeaeaeeeeressssstrara i aaaaeeeeeassssesessssssssssannnnnnneeses 24
Persistence oOf VISION.........uuuiiiiiiiiiiiiic e e e e e e e e e e e e e e e aaaaaeeeas 25
DN Lo (o) 0 1= S 26
Activity 9: Real Time ClOCK..........coooiiiiiiiiiciieee e e e e e e e e e e e e e e et e e e s ab e e e eaaans 27
1o 1=3 00 F= 1 (OO PP UPURURRNt 27
SOfEWATE SKEUCH. .. .uciieeiiiiiiieeeeeeee ettt etee e e e e e eeeeeeeeeeeereassaaraeesesnneeees 27
OPEIALIONS. ...evvvviiiiiiieieieeeeeeeeeeeeeeeeeeer et eeeeeeeeeeeeeaeaeeeesesssssstaraaaaeeeeeeessssssesssssrsssrannnnnnneeses 27
Pipes, Date and LINUX.....ccccoooiiiiiiiiiiiiiieieiiiiceieeee e eeeeeeeeeeee ettt eeseeeeeeeeeaaeesseseesesssraneesees 27
INformation StOTAZE.........uuuuiiiiiei e e e e e e e et eee e e e e e e e e e aaeaeeeeaannaaenes 29
DN U 7 (o) 0 1= SO U PP 29
Activity 10: Poker Machine...........coovuiiiiiiiiiiiieiiie e eeeeeeeeeeeeerree e e e e e e e e e e e e e e et e e e s aaaeeesabaeeeseenns 30
SCNEINIATIC. ..evvvtiiieeeeeeee et e e e e e e e e e e e et e e e e eeeeaaaeeaaartaa e abtaaaeattnaaearraaaas 30
17101170 =T SO UUPPPN 30
SOfEWAre SKEECH.... ... e e e e e e e e e e e 31
Pointers and Pointer ArithmatiC........ccooeeeiiiiiiiiiiiiiicree e er e e e eeee 31

[0 0123 iz 1 (o) o V- F SO PPNt 31
Finite State Machines............ooooiiiiiiiiiiiiiciieeee e eeeeeeeeerrree e e e e e e e e e e e e e eeeeeeeaaab e e e saaaaaeees 32

L O 0 et 103 s 1= S UURRRSUPNE 33
AppPendix: FUNCEION LISt.....ccooeieiiiiiiiiiiieeeeecceeeeee e ee e e e e e eeeeeeeeeaaeeesebaeeeserans 34
AP PENAIX: SKEECIES. .. ciiiiiiiiiiiiiiieeeeeeccteee ettt e e e e e e e eeeeeeaeeeerees s eeeeseraan 36
Activity 1 SKetch: BIINK.....cccoooiiiiiiceeeee e e e e e e e e e e et e e e e a e eeeana s 36
Activity 2 Sketch: RGB BlInNK.......coooiiiiiiiicereee e et e e e e e s 36
Activity 3 Sketch: Counting with Colours............uueeiiiieiiiiiiiiieeecccreee e e 37
Activity 4 Sketch: Mood Light........ccciiiiiiiiiiiiiieeeeee e e e e eeeaaees 39
Activity 5 Sketch: RGB TOogEle........cooovveiieiiiiiceieeee e e e e e e e e e e e e e eeeeeaa s 41
Activity 6 Sketch: Infrared Alarme............cccccuviiiiiiiiiiiiiee e e 42
Activity 7 Sketch: 4 Digit 7 Segment Display.........couuviiiiiiiiiiiieeiiiieceeeeeeeeree e rea e 42
Activity 8 SKetch: MarqUee.........uuuuuceieieeeeieeeeeeeeeeeeereeee aaeaaeeeeeeeeesaranss 43
Activity 9 Sketch: Digital CLOCK........uuuuuiiieeiiieii it e e e e e e e e e eaaanes 45
Activity 10 Sketch: Poker Machine..............uuiiiiiiiiiiiiiiiieiccicciiieerceeeeee e e e e e e 47
Appendix: CUurriculim IMAP.........oooiviiiiiiiiiiccccceeee e e e e e e eeeeeeeeeeeeeeeesaarbr e eesranes 52
YEAr 7 And 8.......ouviiiiiiiiiiiieii et e e e e e e e e e e e e e e e ————— et e aaaaaaeeaeaaaaaaaaaeaeaeeraannas 52

== L IV o Uo N T TP 52

Paul Chubb 4

Introduction

These activities were written as part of a project between Intel, CSIRO and ACT schools — this

booklet specifically in the context of the Technology Faculty of Lyneham High School. They
are designed to slowly move the student from the simplest circuit to fairly complex circuits

that utilise almost all the digital pins on a Galileo. They are designed to allow a teacher to

simply supply the students with activity sheets and then concentrate on supporting the

student learning.

At the time of writing the National Curriculum for Digital Technology was still in draft. These
activities are written against that draft for the two bands covering years 7 to 10. Nothing in
this booklet covers all learning outcomes of the curriculum, however the addition of processes
around the tasks such as the familiar design, produce, evaluate process or the alternative
Demming process that includes reflection on what the student has done, together with other
teaching, allow these activities to form a basis for meeting this curriculum. Students,
depending on their level and background, may require support, such as code walkthroughs

and teaching of digital electronic and coding concepts, to improve their understanding.

Because the audience consists of several different ages and can be used with different levels of
student competence, the sample code supplied has been moved to an appendix. This allows the
teacher to decide whether to supply the code to the student as soft copy for cut and paste, hard
copy for typing and correcting or to not supply it at all.

The text of the activities includes loose pseudocode of the algorithms the author used to write
the sample code. In addition, computing and digital electronics concepts are given to the
student in information boxes. Where coding is more esoteric or the learning value of the code

is low, the author has supplied the code in code tables with the activities.

The licensing of this booklet: Creative Commons Attribution, Share Alike, means that the
teacher has a license to use the material in anyway that they choose as long as they attribute
and share the content under the same terms. This frees the teacher to print, copy, store or
publish to their hearts content.

Paul Chubb 5

Hardware and Software

Hardware Requirements

Part per kit

220 ohm Resistor

470 ohm Resistor

10K ohm Resistor

Red LED

RGB LED

4 digit 7 Segment display

PIR Sensor such as dfrobots SEN0171
NPN Transistors (eg BC548s)
Piezo Buzzer

Push Button

Galileo Board

Hook up wire

Bread board

USB 2.0 type A to micro B cable

Software Requirements

o R e e = O 00 W

=
= = O

Fritzing Version 0.9.0 Beta or above which
includes the Galileo

Only required if the student need to easily
create their own schematics

Arduino IDE 1.53 Intel version or above
which supports the Galileo

This is available on the Intel download site. I
expect that the main line of the Arduino IDE
will soon support the Galileo.

A good code editor such as Gedit

While it is possible to edit code directly in the
IDE, it is not a particularly productive
process when doing the first cut of code.
Windows, which most students will be
working with, doesn't supply an appropriate
programmer's editor. Gedit is a simple editor
which includes syntax highlighting for C and,
being free, is a good choice for this purpose.

Paul Chubb

Activity 1: Blink

In this initial activity you will connect an LED to the Galileo and write a sketch to make it

blink.

Schematic

Parts List

* Intel Galileo
* LED of any colour
e Resistor ~220QW

fritzing

Using LEDs

.

LEDs like all diodes only allow current to run in one direction (arrow in the symbol). This means that if you
place them the wrong way around, they will not light up. The longer leg connects to the +ve side and the
shorter to the —ve side. If your LED doesn’t light up try flipping it around.

/

Software Sketch

Operations

To make the LED blink you need to:
* Label the pin you are using
* Initialise the pin to do OUTPUT
* Loop around:
* Toggling the pin high
* Pausing
* Toggling the pin low
* Pausing

Paul Chubb

-

consists of two functions:

.

\

a)

b)

~

Sketches

A basic Arduino programme (called a sketch)

setup() - Place all code to setup for your
programme here.

Loop() — this function is repeatedly called.

This is where your code goes or is called fromj

Functions

Function

Example

Purpose

assignment

int iLedPin = 13;

Replace a number with
a meaningful label to
make it easier to read.

pinMode(<pinnumber>, INPUT | OUTPUT);

pinMode(13, OUTPUT);

Set a pin to either send
or receive.

digitalWrite(<pinnumber>, LOW | HIGH);

digitalWrite(13, LOW);

Set a pin to either low
voltage or high voltage.

delay(<milliseconds>);

delay(1000);

Wait for a period of
time.

Paul Chubb

Activity 2: RGB Blink

In this activity you will build on your work in activity one by using an RGB LED rather than a
single LED. Choose your parts list and schematic based on which type of RGB LED you have.

Schematic

03)l1e9
[3ul
ounply

(1)

v0
3"
M=
ws |
0
)
-

LED1 RGB CA

N}
N
g

Y

N\

THed

THed

Paul Chubb

fritzing

Parts List
1. Intel Galileo board
2. RGB LED (common
cathode)
3. 3x220Q resistors

Parts List
1. Intel Galileo board
2. RGB LED (common
anode)
3. 3x220Q resistors

4 N

LED Resisters

Different LEDs require
different resistors. To calculate
the minimum required:

Vr = (Forward) Voltage of LED
Ir = (Forward) Current of LED
Vs = Supply Current (5v or 3.3v)

R=(Vs-Ve)/Is

\

%

RGB LEDs

RGB LEDs combine red, green and blue LEDs to allow you to have any colour from off (black) to white.
They come in two types: common cathode and common anode. Common cathode means they are connected
on the negative or ground side. Common anode means they are connected on the positive or power side. For
common anode, you toggle the pin low to switch on the light, and high for common cathode.

.

/

Software Sketch

Operations

Rewrite the blink sketch from activity 1 to light each LED in turn with a pause between them.

Note if you have a common-anode RGB LED then you will have to switch the pin

low before it switches high.

To make each LED blink you need to:
* Label the pin you are using
* Initialise the pin to do OUTPUT

* Loop around:

e For each colour:

* Toggling the pin high
* Pausing
* Toggling the pin low
* Pausing
Functions
Function Example Purpose
assignment int iLedPin = 13; Replace a number with

a meaningful label to
make it easier to read.

pinMode(<pinnumber>, INPUT | OUTPUT);

pinMode(13, OUTPUT);

Set a pin to either send
or receive.

digitalWrite(<pinnumber>, LOW | HIGH);

digitalWrite(13, LOW);

Set a pin to either low
voltage or high voltage.

delay(<milliseconds>);

delay(1000);

Wait for a period of
time.

Paul Chubb

10

Activity 3: Counting by Colours

In this activity you will use an RGB LED to simulate a counting number. If you count up in
decimal, after you reach 9 you add one to the next column making 10. In this activity you will
add “ones” of brightness and once you reach a maximum will add a “one” to the next colour.

Schematic
‘ ‘ 1] L ‘ ‘ Parts List
23) g %4 « Intel Galileo board
e RGB LED (common
FEE cathode)
r . 28%3 + 3x220Q resistors
LEDL Lo <5 A 3
fritzing
‘ ‘ Parts List
= = === * Intel Galileo board
: R « RGB LED (common
oz anode)
25ES + 3x220Q resistors
LED1 RGB CA 5‘2S’} =
fritzing

Paul Chubb

11

Bitwise Operations

\J

which is four bytes:

= 00000000 00000000 00010011 00000000

= 00000000 00000000 00000000 00010011

_

One quick and easy way to pull a specific 8 bits out of 32 is to use a bitmask and bit operators. You use a
number with each bit of the portion you want set and a bitwise “and” (&).to extract it. Using shift left (<<)
or shift right (>>) moves the bits you now have to where you want them. For example we have a long

10110110 11110011 00010011 11001110 & 00000000 00000000 11111111 00000000

but we now want that value in the far right position so we shift it right 8 places

00000000 00000000 00010011 00000000 >> 8

~

%

Software Sketch

Operations

We use an adding algorithm to change the colours. To do this, you will use some bitwise

operations. These functions extract the bits you need for you.

To count in colours:
* Setup the three pins to output
* Loop
* Add a step value to your colour

» Ifthe colour is now greater than

ILimit, set it to zero.

* Analog write the value of the
first byte of colour suitably
corrected to the blue pin.

* Analog write the value of the
second byte of colour suitably
corrected to the green pin.

* Analog write the value of the
third byte of colour suitably

corrected to the red pin.

Paul Chubb

Byte Extractors

// this is the maximum number you count to
long ILimit = 16777216;

byte GetFirstByte(long INumber) {
long IFirstByteMask = 255;

return 1FirstByteMask & INumber;
}

byte GetSecondByte(long INumber) {
long 1SecondByteMask = 65280;

return (ISecondByteMask & INumber) >> 8;
}

byte GetThirdByte(long INumber) {
long IThirdByteMask = 16711680;

return (IThirdByteMask & INumber) >> 16;
}

12

/ q Pulse Width Modulation (PWM) \

Pulse Width Modulation is a way to control things like LED brightness or motor speed by

simulating different voltages on a digital pin. Only

I === T AT 1

certain digital pins on Arduino compatible boards, /

T 1T T T TT 7T 1T]
Reference

Limits
Crurpur

ol

including the Galileo, support PWM. Doing an

Amnalog signals

analogWrite to one of these pins causes that pin to send

out a square wave which simulates a voltage. The square

wave switches the pin from high (usually 5v) to low (0v)
very fast. The highs and lows are fast enough to average
the voltage. So the more highs in the square wave, the

Delta-PWh signal

higher the simulated voltage, the more lows, the lower

the simulated voltage. The device — say an LED — T
. CC-BY, SA Cyril Buttay, wikimedia
attached to the pin will then brighten or dim accordingly.
The term “dutycycle” is used to describe the amount of time that the voltage is high. So for a dutycycle of

25%, 75% of the time the voltage will be low and 25% of the time the voltage would be high.

_ %

Functions
Function Example Purpose
if (<condition>) <statement>; if (IColour >= 1Limit) Test something and
1Colour = 0; act on the result.
analogWrite(<pin number>, <speed>); analogWrite(iBluePin, bBlue); Start PWM on a pin
at a specified speed.
<variable> +=<value> 1Colour += bStep; Add value to the
contents of variable
and assign the result
to variable
digitalWrite(<pinnumber>, LOW | HIGH); digitalWrite(13, LOW); Set a pin to either
low voltage or high
voltage.
delay(<milliseconds>); delay(1000); Wait for a period of
time.
pinMode(<pinnumber>, INPUT | OUTPUT); pinMode(13, OUTPUT);, Set a pin to either
send or receive.

Paul Chubb 13

Activity 4: Mood Lamp

A mood lamp randomly fades between different colours. For best results with your mood light
you may need to tune your resistors so that each light is the same intensity. Secondly if the
RGB LED is clear you may need to diffuse it. Either scratch the surface of the LED with fine

sandpaper or wet and dry paper (ask your teacher first) or wrap a bit of paper around it.
Something like cooking greaseproof paper works well.

Schematic

LED1 RGB CA

THed

Parts List

Intel Galileo board
RGB LED (common
cathode)

3x220Q resistors

Parts List

THed

Paul Chubb

fritzing

Intel Galileo board
RGB LED (common
anode)

3x220Q resistors

14

Software Sketch

Operations

You will need the following functions:

SetTarget()

call random to get a random colour

set a target for each of red, green and blue by extracting the third, second and first byte
of your random target respectively

Set the direction from where each colour is to each target — positive 1 for counting up,
and -1 for counting down.

Setup()

loop()

Prepare each pin for output
seed the random number generator by doing an analogread from an unconnected pin
set the targets

if we have reached our target colour
* Write out our target colour on each pin
* delay to admire the colour
* set the next target
check each of the colours and if it hasn't reached its target add its direction variable
write each pin
delay a small amount of time to slow it all down

-

numbers that seem at first glance to be random but really follow a pattern. This is why when you use
shuffle on your music player, often the song selection seems similar.

To help avoid this problem, most random number generators have the ability to be started with a truly
random number. Arduino's “randomSeed” takes a random number and starts the generator and thus gets

a more truly random sequence of numbers.

Getting a truly random number is in itself a challenge. Real world applications have been known to use

radio wave static or even weather patterns. In this case we use the uncertain analog value on an

~

Pseudo Random Numbers

Computers don't really do random numbers. A random number generator tends to generate

!nconnected pin. This is easy and gives a fairly random number. /

Functions
Function Example Purpose
if (<condition>) <statement>; if (IColour >= 1Limit) Test something and act on
1Colour = 0; the result.

Paul Chubb 15

analogWrite(<pin number>, <speed>);

analogWrite(iBluePin, bBlue);

Start PWM on a pin at a
specified speed.

<variable> +=<value>

1Colour += bStep;

Add value to the contents of
variable and assign the
result to variable

digitalWrite(<pinnumber>, LOW | HIGH);

digitalWrite(13, LOW);

Set a pin to either low
voltage or high voltage.

delay(<milliseconds>);

delay(1000);

Wait for a period of time.

randomsSeed(<seed value>);

randomSeed(analogRead(0));

Sets the random number
generator to be really
random by supplying a seed

pinMode(<pinnumber>, [[INPUT | OUTPUT));

pinMode(13, OUTPUT);

Set a pin to either send or
receive.

long random(<uppervalue + 1>);

ITarget = random(lLimit);

Provides a pseudo random
number between 0 and
<uppervalue>

int analogRead(<pin number>);

iVal = analogRead(0);

Reads the voltage on a
specified pin as a digital
number.

Paul Chubb

16

Activity 5: Light Switching

In this activity you will create software and hardware to switch between the different colours of

an RGB LED.

Schematic

Parts List

S1

Tved

fritzing

Intel Galileo board
RGB LED (common
cathode)

3x220Q resistors
1x10KQ

Push button

Parts List

S1

S

R4
10kQ

MW\

[6[i44

A

T3ed

fritzing

Intel Galileo board
RGB LED (common
anode)

3x220Q resistors
1x10KQ

Push button

/

Push Buttons

.

These buttons make a connection between the two pins on one side with the two pins on the Q
other side. Straighten the pins for best results in a breadboard. ¢

\

/

Paul Chubb

17

[N

Pull up and pull down resistors

Digital circuits such as the Intel Galileo read ones and zeros by checking the voltage. If the voltage is not
what is expected then the result is uncertain. Pull up and pull down resistors force the voltage to expected
levels when moving between one and zero. Generally pull up and pull down resistors are 10K Q. This value
fits most situations.

For example: a circuit with pull up resistor connected to a 5v source will force the voltage to 5v when the
circuit is not connected to ground. The effect of ground is much more powerful than the effect of the voltage
across the pull up resistor so when connected to ground, the voltage in the circuit will be Ov.

A pull down resistor works in a similar way except it pulls the voltage to Ov except when a 5v source is
connected.

%
~

Software Sketch /

Debouncing
\
Operatlons From the Galileo's viewpoint, switches don't
change cleanly. During a change they will
To Setup: bounce from on to off and back again several
* Set the mode to output on each LED times. Code needs to test for a stable state before
pin. acting on the switch state.

e Set the mode to input on the switch pin. . . i .
S he LED d th One way is to read the switch, wait for a time,
et the to r.e on to start with. say 50ms, then read it again and check if it is the
* Set other LED pins to off same. If it is then we can believe the switch.

To Cycle: & /

* Debounce the switch and check it is
stable
* check if the switch has changed
* if the switch is on
* Turn the current colour off
» if the current colour is red, set it to green
» if the current colour is green set it to blue
» if the current colour is neither red nor green set it to red
e Turn the current colour on.
* Remember what state the button was in.

Paul Chubb 18

Functions

Function

Example

Purpose

if (<condition>) <statement>;
else <statement>;

if 1Colour >= ILimit) 1Colour = 0;
else IColour = 1;

Test something and
act on the result.

digitalWrite(<pinnumber>, LOW | HIGH);

digitalWrite(13, LOW);

Set a pin to either
low voltage or high
voltage.

pinMode(<pinnumber>, INPUT | OUTPUT);

pinMode(13, OUTPUT);

Set a pin to either
send or receive.

[LOW | HIGH] digitalRead(<pinnumber>);

Paul Chubb

If (digitalRead(13) == HIGH) IColour = 0;

Reads whether a pin
is high or low

19

Activity 6: Infrared Alarm

In this activity you will use a passive infrared motion detector (PIR) and a piezo buzzer to
make a sound when someone moves.

Schematic
‘ Part1 X Parts List
¢ Intel Galileo
‘ ; ¢ Piezo Buzzer
. | e PIR such as dfrobot's
o o SEN0171W
— ?EE? 5 - &
] [T
fritzing

Software Sketch

Operations

To make a noise when the motion detector is activated:
* Set the buzzer pin to output and the sensor pin to input
* Loop and:
* check to see if the sensor pin is high.
» Ifthe sensor pin is high
* analogWrite the buzzer pin at a selected duty cycle (1 - 254).
* Delay a while
» analog write the buzzer pin with 0.

q Piezo Buzzers
These are very simple noise makers but can be made softer or louder using the PWM duty cycle.
The maximum volume is reached at about 50%. Their tone or frequency can be changed and melodies can

be played using such commands as tone().

. /

Paul Chubb 20

Functions

Function

Example

Purpose

analogWrite(<pin number>, <speed>);

analogWrite(iBluePin, bBlue);

Start PWM on a pin at a
specified speed.

delay(<milliseconds>);

delay(1000);

Wait for a period of time.

Paul Chubb

pinMode(<pinnumber>, [[INPUT | OUTPUT));

pinMode(13, OUTPUT);

Set a pin to either send or
receive.

21

Activity 7: LED Display

In this activity you will create hardware and software to cycle through all LEDs on a 4 digit, 7

segment common cathode display.

Schematic

5461AS

Pins are left to

right bottom 1-6
- ‘ and right to left top
' 7-12:

in pin 1: E

= pin 2: D

g pin 3: DP

RO
10kQ 2 = 3
of/‘]—fww—l -

pin 5: G
pin 6: Digit 4

pin7: B

pin 8: Digit 3
pin 9: Digit 2
pin 10: F

pin 11: A

pin 4: C
R1 - R8 4700h
==

pin 12: Digit 1

00
0.

1 2 3 4 5 6 7

01
01

8 9 10 11 12

7
SEGMENT
4DIGIT

I,

I
I 0.0_1.

Parts:

* Intel Galileo board

* 4 digit, 7 segment display
such as 5461AS

o 8x470Q resistors

* 4x10KQ resistors

e 4xNPN Transistors such as
548s

_

Paul Chubb

/ .

fritzing

~

7 Segment Displays

D0

These consist of one LED per segment that @ @
make up the digit, often with a common anode —
or cathode. Where they are connected into CC-BY, SA:
multi digit displays, the common anode or Wikipedia
Commons

cathode for each digit is attached to one pin
while the individual segments share the same pins for that
segment on each digit. To switch on a segment, you select
the common anode or cathode pin on that digit, then the
common segment pin.

%

22

4 N

Transistors
\J
We are using transistors as tiny switches to handle the current coming from each
digit of the display. A pin of the Galileo can probably not handle (sink) the B@j =
required amount of current to control a digit so we switch the current through a Z o
transistor. . /

. /
Software Sketch

Operations

Create Global variables:
* Create an array of integers holding the pins numbers connected to segments.
* Create an array of integers holding the pin numbers controlling digits

Setup():
* Use a for loop to set the mode on each segment pin to output.
* Use a for loop to set the mode on each digit pin to output.

Loop():
1. For each digit in the digit array

* make the digit pin high

» for each segment in the segment array
* make the segment pin high
* delay for say 500ms
* make the segment pin low

* make the digit pin low.

Functions

Function Example Purpose

<type><varname>[] = {(<element>,<element>,...}; |int iaSegs[] = {0, 2,4.6,7, 1, 3, 5}; Create an array with
some values

digitalWrite(<pinnumber>, LOW | HIGH); digitalWrite(13, LOW); Set a pin to either
low voltage or high
voltage.

pinMode(<pinnumber>, INPUT | OUTPUT); pinMode(iaSegs[i], OUTPUT); Set a pin to either
send or receive.

for ([<Start value>]; [<end test]; [<change op>]) | for (i=0;i<50;i++){ ...} For loop. Starts with

<statement>; i equal to 0, stops
when i is equal to 50
and i increases by 1
each loop.

delay(<milliseconds>); delay(500); Waits the specified
number of
milliseconds

Paul Chubb 23

Activity 8: Marquee

A marquee in computer terms is a scrolling area of text. In this exercise you will attempt to
scroll a message across your 4 digit display. However some letters are impossible to form and
you only have four digits — good luck.

Schematic 5461AS
Pins are left to
right bottom 1-6
- 2 = and right to left top
— 7-12:

pin 1: E
= . o N pin 2: D

R9 S| = 8 :
ol Loke £ 2328522 =3g3 = pin 3: DP
j I | pin 4: C
"—s 1 | | | L L % % pin 5: G
10kQ RrI1 | = R1 R8 4700hm .

pin 6: Digit 4

Qs . = = R
. jj] =7 bin 7B

THed

Q4 pin 8: Digit 3
pin 9: Digit 2
pin 10: F

pin 11: A

| pin 12: Digit 1

1 2 3 4 5 6 7 8 9 10 11 12

SEGMENT
4DIGIT

0000 00070
O 0.0 0. 0007

<o o> @ <> <>
fritzing

Software Sketch

Parts: Operations

» Intel Galileo board * Create Global variables:

* 4 digit, 7 segment display * Create an array of integers holding the
such as 5461AS pins numbers connected to segments.

* 8x470Q resistors * Create an array of integers holding the

* 4x10KQ resistors pin numbers controlling digits

* 4xNPN Transistors such as * Create an array of highs and lows to store
548s your message (see note).

* Create a number of times a digit is
displayed in a location say 25 times.

* Setup():

Paul Chubb 24

Use a for loop to set the mode on each segment pin to output.

* Use a for loop to set the mode on
or J00P Example Message Array
each digit pin to output.
// USB id for Galileo is 8086:babe
. . . int L = LOW;
What we are doing is select%ng 4 letters int H = HIGH:
from our message and moving our int iaMessage[1[8] = {
selection down the array one letter for (L,L,L,L,L, L L L}, // alloff
each time through. So we need to keep {L, L, L, L L L L L}, //alloff
track of where we are in the array and L L L LLLL L, /alloff
Here Y (L,L,L,L, L, L, L L}, /alloff
use the digit pin number to select the (L,L,L L LLHL, /dash
next letter: digit 0 will get the current {L,L,L,L,L,L,H,L}, /dash
location, digit 1 will get the letter after {L, L, L L, L, L, H L}, //dash
the current location etc. To control speed L L L L L, L, H, L, //dash
e peet (L,L,H,H,H HHL), /B
and to ensure we see the digit before it is (H,H,H H HLHL, /A
gone, we need to display each digit a (L,L,H,H,H,H,H,L}, /B
number of times — 25 times worked for H,L, L H,HHHL, /E
me {L,L,L,L,L,L,H, L}, //dash
: (L,L, L L HHLL, /I
H,L,H,H,L,H H L}, /S
* Loop(): {L,L,L, L, L, L, H L}, /dash
« For each digit in the digit array {L, L, H, H, H, H, H, L}, x 2
. Lo ({,H, 1, H,H,L H L},
make the digit pin .hlgh L LHHHLL, /C
° get the Correspondlng (L,L,H,H H L HL, /O
letter checking whether (LL,H L H L HL, /N
we wrap to the beginning L, L, L L L L L H}, /.
of the message. {L, L, L L, L L L H, /.
. {L,L,L,L, L, L, L, H}, /.
» for each segment in the J.

segment array
* Make the segment
pin high
* delay for say 1ms
* Make the segment pin low
* make the digit pin low.

If we have displayed the letter enough times, move our current message

location along and wrap if necessary

-

\

Persistence of Vision

In TV, films, games and several other things, the device draws and redraws little bits very fast.

flicker. With more different code, it is possible to remove this flicker. Try editing your code and replacing
delay() with delayMicroseconds().

In this activity you will draw each segment of each digit one after another. You will switch off each digit to

\

Fast enough so that the eye is fooled into believing that there has been either no change or a smooth change.

move to the next on. Because you are doing this really fast, it looks like the digit remains lit although it does

%

Paul Chubb

25

Functions

Function

Example

Purpose

<type><varname>[] = {<element>,<element>,...};

int iaSegs[] = {0, 2, 4. 6, 7, 1, 3, 5};

Create an array with
some values

digitalWrite(<pinnumber>, LOW | HIGH);

digitalWrite(13, LOW);

Set a pin to either
low voltage or high
voltage.

pinMode(<pinnumber>, INPUT | OUTPUT);

pinMode(iaSegs[i], OUTPUT);

Set a pin to either
send or receive.

for ([<Start value>]; [<end test]; [<change op>])

<statement>;

forG=0;1i<50;i++){...}

For loop. Starts with
i equal to 0, stops
when i is equal to 50
and i increases by 1
each loop.

delay(<milliseconds>);

delay(500);

Waits the specified
number of
milliseconds

<type><varname>(]
<type><varname>[<number>]
<type><varname>[][<number>]

Char Castring[] = {“a”’ “b”’ “c”’ “d”};
int iaNumbers[10];
int iaSegments[1[2] ={{1, 2}, {3, 4}};

Declaring arrays of
variables. Think of a
string of boxes or a
chess board. When no
number is specified
as the dimension,
they have to be
initialised as shown.
Two lots of square
brackets mean two
dimensional arrays.
More dimensions are
possible.

delayMicroseconds(<microseconds>)

Paul Chubb

delayMicroSeconds(10);

Delay for a number of
microseconds.

26

Activity 9: Real Time Clock

In this activity you will use the built in real time clock on the Galileo and the 4 digit 7 segment
LED display to create a digital clock

Schematic 5461AS

Pins are left to
right bottom 1-6
S = and right to left top
val 7-12:

pin 1: E
pin 2: D
pin 3: DP
pin 4: C

A 2 pin5: G
o R, g % -R84700nm pin 6: Digit 4
Q3 | K
] pin 7: B

led

Qa pin 8: Digit 3
1 pin 9: Digit 2
pin 10: F
pin 11: A
pin 12: Digit 1
1 23 4 56 7 8 9 10 11 12

4DIGIT

00 00070
0.0 0.0 7.

<= o O <> O

00
07

fritzing
Parts: Software Sketch
* Intel Galileo board
* 4 digit, 7 segment .
display such as 5461AS Operations
* 8x470Q resistors * Create Global variables:
* 4x10KQ resistors * Create an array of integers holding the
* 4xNPN Transistors such pins numbers connected to segments.
as 548s * Create an array of integers holding the
pin numbers controlling digits
. Create an array of highs and lows to store the digits and dp (see note).

4 N

q Pipes, Date and Linux

Galileo runs linux under the covers. Linux provides a rich environment for you to use. The date
command is a good example. Linux uses date to set and get the date and time. /bin/date 114100014 sets the
date to 14/11/2014 and the time to 10:00am (MMDDhhmmYY). Normally you would use date from the

command line but we want to use it in our code, so we use a pipe to call it. A pipe passes information to a

command and then gets what it returns back to your code. See the code box....

/

Paul Chubb 27

Setup() Numeral Array

e Start serial comms at 9600 BAUD. int iaNumbers[I[8] = {

* Open a pipe to the /bin/date JH,H,H,H,H,L, L}, /0
command to set the date and time HHLLLLL, /1

to the current date and time, then H, L, H,H L H L, /2
close the pipe (see note). B, HH L L H L, /3
HHLLHHL), /4

* Set the pins controlling the digits

FEEEEREFERFE
ol
T

H,LHHL, /5
and the segments to output. ,L,H, H,H, H,H,L}, /6
JHH, L L LLL, /7
,H,H,H,H, H, H, L}, /8
,H, H,L,L,H,H, L}, /9
Loop() L, L LLLLLH, /DP
* Open a pipe to the /bin/date };

command to read back the current

i h 1 it. .
time, then close 1t Set the date and time

* Use a for loop to walk through the

digits and return from the /bin/date // use date command to set the date and time numbers:
/MMDDhhmmYY
command.

R L. . char *cpStartTime = "/bin/date 1114100014";
* Switch the digit pin high

* take this digit from the time
string and convert it to a Jin setun0)
1mn setu
. %ZI::E;Z‘I‘ loop to walk char *ch()i = cpStartTime;
char buf[64];
through the segments to set |FILE *ptr;
the number based on the
current time digit. I st'art ser.ial comms
« Set the current Serial.begin(9600);
segment according to | // get the time
the segment array for| if (ptr = popen(cmd, "r")) != NULL)
this number {
* Wait for a millisecond
* Set the segment to

—~

)

while (fgets(buf, 64, ptr) = NULL)
{

Serial.print(buf);
low }
o If this is the second digitie | }
number 1 (void) pclose(ptr);
* set the decimal point
to high Get the time
* waitfora ///in loop()
milliseconds char *cmd = cpRetTime;
* set the decimal point |char bufl64];
to low FILE *ptr;
* Switch the digit pin low. 1 read back the time

if ((ptr = popen(cmd, "r")) != NULL) {
while (fgets(buf, 64, ptr) != NULL) {
Serial.print(buf);
}

}
(void) pclose(ptr);

Paul Chubb 28

-

Information Storage

uses and languages.

&olution of simply taking away the ASCII value of zero (48).

~

While everything is stored as binary, ones and zeros, we have to make sure that one computer's
ones and zeros mean the same as another computer's ones and zeros. To do this we have agreed codes and
protocols. To store and transmit information two traditional codes are ASCII (American Standard Code for
Information Interchange) and EBCDIC (an IBM sponsored competitor). These encode character information
and a few control codes. Nowadays things are a bit more complicated with codes designed for many different

In this activity you get a time that is numbers as ASCII characters and you want to use it as numbers as

numbers. There are several ways to translate ASCII characters of numbers to numbers. I used a simplistic

/

Functions

Function

Example

Purpose

digitalWrite(<pinnumber>, LOW | HIGH);

digitalWrite(13, LOW);

Set a pin to either low voltage
or high voltage.

pinMode(<pinnumber>, INPUT | OUTPUT);

pinMode(iaSegs[i], OUTPUT);

Set a pin to either send or
receive.

for ([<Start value>]; [<end test]; [<change op>])
<statement>;

for 1=0;1<50;i++){...}

For loop. Starts with i equal to
0, stops when i is equal to 50
and i increases by 1 each loop.

delay(<milliseconds>);

delay(500);

Waits the specified number of
milliseconds

<type><varname>(]
<type><varname>[<number>]
<type><varname>[][<number>]

Char castring[] - {“a”,“b”’“c,’,“d”};
int iaNumbers[10];
int iaSegments[1[2] ={{1,2},{3,4}};

Declaring arrays of variables.
Think of a string of boxes or a
chess board. When no number
is specified as the dimension,
they have to be initialised as
shown. Two lots of square
brackets mean two
dimensional arrays. More
dimensions are possible.

<fileptr>popen(<cmd>, <fileflags>);
pclose(<fileptr>);

ptr = popen(“/bin/date +%k%M”);
pclose(ptr);

popen opens a pipe to a linux
command that is run and the
output returned via the ptr.

[<string> | <null>]fgets(<buffer>, <length>,
<fileptr>);

If (fgets(buf, 64, ptr) == NULL)
Serial.print(“finished);

fgets attempts to read a string
up to one character less than
the stated length. When it
finishes it returns NULL.

Serial.begin(<bitrate>);
Serial.print(<string>);

Serial.begin(9600);
Serial.print(buf);

Serial.begin starts serial
communications from the
Galileo to the computer.
Serial.print writes the string
back to the computer to the
serial monitor.

Paul Chubb

29

Activity 10: Poker Machine

In this activity you will create a simple poker machine. When you press a button, the Galileo
will display — with suitable effects — a random set of numbers on a four digit display.This is
perhaps the most complex activity in both code and electronics.

Schematic

R14

1¢

R9 ; =

1C

10kQx
Q1
p

Q2

Q3

Q4

R1 - R8 4700hm

AAAA
M-—
Wiy
WY
Tyed

5461AS
Pins are left to
right bottom 1-6
and right to left top
7-12:

pin 1: E

pin 2: D

pin 3: DP
pin 4: C

pin 5: G

pin 6: Digit 4
pin7: B

pin 8: Digit 3
pin 9: Digit 2
pin 10: F

pin 11: A
pin 12: Digit 1

ul

Parts:

* Intel Galileo board

* 4 digit, 7 segment
display such as
5461AS

* 8x470Q resistors

* 5x10KQ resistors

* push button

* 4xNPN Transistors
such as 548s

Paul Chubb

(G <= >S§g%w @
Loy
@@Q (e c X e >H
fritzing
/
Structures

Structures, sometimes
called records in other computer
languages, are a way of gathering
together variables that relate to a
specific thing. This makes
accessing the variables very
convenient and improves the

readability of code. For example

-

struct DIGIT {
int *paThisNumber; /
int iDepth;
int iBuilding;
int iCurrent;
int iTimesSpun;
int iTimesDisp;
int iDigit;
} sDigit;

this structure has all the control variables of a digit.

~

%

30

/ \ Software Sketch
0 Pointers and Pointer Arithmatic

Pointers are one of the hardest things to learn. Think Operations

of a row of bags with labels and handles. They are easy to find « Create Global variables:

d pick up. A pointer i f addi handl d label t
and pick up. A pointer is a way of adding a handle and label to a - Create an array of

variable. . . .
integers holding the pins
- &iDigit returns a pointer to iDigit numbers connected to
ments.
- *aPtr returns what aPtr is pointing at segments
* Create an array of
- aPtr->anElement returns a member of the structure that aPtr integers holding the pin
is pointing at. numbers controlling
digits

Adding a one to a pointer causes that pointer to point to the .
* Create an array of highs

and lows to store the

would point to the next element of that array. It works in a digits and dp (see note on

similar manner for other numbers and subtraction. aCtiVity
e Create constants (defines)
for the states of your state

machine: Waiting,

next variable, in the bags analogy, the next bag in the row. Say

you had a pointer to an array. This would mean that aPtr+1

Building, Built and Prestart.
. Create an array of structures to manage the four digits.

Setup()

* Set the switch pin to input

* Set the segment and digit pins to output

* initialise the digit structure array

* Set each digit to a state of “Prestart”

* Seed the random number generator by reading an empty pin

Start()
Parameters: a pointer to a digit structure, an offset into the number array, the digit
number (0 — 3)

* Store
* a pointer to the number array entry with the highs and lows required for
this digit
* The depth we have displayed ie 0
* The state ie Waiting
* The current segment we have built to ie 0
* The times we have spun ie 0
* The times we have displayed ie 0
* The digit number

Scramble()

Parameters: a pointer to a digit structure
* For this digit:

Paul Chubb 31

Loop()

* Check if we have displayed all the segments if we have start again and
increment the number of spins.
* Open the display digit for output
* if our state is Built or Building
* use a for loop to switch each segment high or low up to the current depth
» After all have been switched high or low according to the number array,
delay for a millisecond
+ Ifthe state is Waiting and we have spun enough times, change our state to
Building.
» If our state is not Built
» switch on the segment indicated by current
* increment times displayed
* delay for a millisecond
+ if we have displayed this stuff enough times
* increment current
» if the state is Building, increment depth
» Ifthe depth is at the end of the segments, change our state to
Built
* Set the times displayed to zero
* Close all the segments and this digit

* check a digit to find out our state
o If our state is either Built or Prestart
* Check the switch state
o If the switch state is not the same as the last switch state
e store our current time (milliseconds)
* set Last switch value to current switch value
» if the current time (milliseconds) is greater than the stored time plus the
debounce time
o If the switch value is low
* restart each digit structure with a random number under

* Call scramble for each digit in the digit structure array.

/

types of problems that make them easier to solve. You define il
. . Waiti
different states or conditions and how the programme gets from Switch / L Over

one to another. This gives a structure to your programme and .
the problem you are solving and also makes debugging easier. / ‘ R
In the picture we have four states: Prestart ie before we have
started, Waiting in which we display pretty patterns, Building
in which we morph the patterns into a number and Built in
which we display the number. To get from Prestart and Built to Waiting we look for a switch press. To

get from Waiting to Building we complete a number of pretty patterns and from Building to Built we

\

Finite State Machines
Prestart -
A finite state machine is a way of looking at certain ||

Buit — ~ ~ ~— | | Building
L Number

Complete

!ave to complete displaying the number. /

Paul Chubb 32

Functions

Function

Example

Purpose

<type><varname>[]
<type><varname>[<number>]
<type><varname>[][<number>]

Char caStI’lng[] — {“a”’ “b”, “C”, “d”}
int iaNumbers[10];
int iaSegments[1[2] ={{1, 2}, {3, 4}};

5

Declaring arrays of
variables. Think of a string
of boxes or a chess board.
When no number is specified
as the dimension, they have
to be initialised as shown.
Two lots of square brackets
mean two dimensional
arrays. More dimensions are
possible.

assignment

int iLedPin = 13;

Replace a number with a
meaningful label to make it
easier to read.

delay(<milliseconds>);

delay(1000);

Wait for a period of time.

digitalWrite(<pinnumber>, [LOW | HIGH]);

digitalWrite(13, LOW);

Set a pin to either low
voltage or high voltage.

for ([<Start value>]; [<end test]; [<change op>])
<statement>;

forG=0;1i<50;i++){...}

For loop. Starts with i equal
to 0, stops when i is equal to
50 and i increases by 1 each
loop.

if (<condition>) <statement>;
else <statement>;

if 1Colour >= 1Limit) 1Colour = 0;
else IColour = 1;

Test something and act on
the result.

int analogRead(<pin number>);

iVal = analogRead(0);

digitalWrite(<pinnumber>,
LOW | HIGH);

long random(<uppervalue + 1>);

ITarget = random(lLimit);

Provides a pseudo random
number between 0 and
<uppervalue>

pinMode(<pinnumber>, [[INPUT | OUTPUT));

pinMode(13, OUTPUT);

Set a pin to either send or
receive.

randomSeed(<seed value>);

randomSeed(analogRead(0));

Sets the random number
generator to be really
random by supplying a seed

defines or pseudo constants

#define ANUMBER 10

A way to create a named
constant in C. Note that
there is no semicolon at the
end of the line.

struct <name> '{ ' {<variable>}+ }’; struct DIGIT { A structure that gathers
int *paThisNumber; variables that relate to a
int iDepth; common thing for better
int iBuilding; handling and readability.
int iCurrent;
b
pointers pThisDigit->paThisNumber = Pointers are used to point to
&iaNumbers[iOffset][0]; other things as a way of
manipulating those things.
millis() IWaited = (long)(millis()); Get the elapsed time in

milliseconds since starting.

Paul Chubb

33

Appendix: Function List

Function

Example

Purpose

[<string> | <null>]fgets(<buffer>, <length>,

<fileptr>);

If (fgets(buf, 64, ptr) == NULL)
Serial.print(“finished);

fgets attempts to read a
string up to one character
less than the stated length.
When it finishes it returns
NULL.

<fileptr>popen(<cmd>, <fileflags>);
pclose(<fileptr>);

ptr = popen(“/bin/date +%k%M”);
pclose(ptr);

popen opens a pipe to a linux
command that is run and the
output returned via the ptr.

<type><varname>[]
<type><varname>[<number>]
<type><varname>([][<number>]

Char caStI’lng[] — {“a”’ “b”, “C”, “d”}
int iaNumbers[10];
int iaSegments[1[2] ={{1, 2}, {3, 4}};

Declaring arrays of
variables. Think of a string
of boxes or a chess board.
When no number is specified
as the dimension, they have
to be initialised as shown.
Two lots of square brackets
mean two dimensional
arrays. More dimensions are
possible.

<variable> +=<value>

1Colour += bStep;

Add value to the contents of
variable and assign the
result to variable

analogWrite(<pin number>, <speed>);

analogWrite(iBluePin, bBlue);

Start PWM on a digital pin
at a specified speed.

assignment

int iLedPin = 13;

Replace a number with a
meaningful label to make it
easier to read.

defines or pseudo constants

#define ANUMBER 10

A way to create a named
constant in C. Note that
there is no semicolon at the
end of the line.

delay(<milliseconds>);

delay(1000);

Wait for a period of time.

delayMicroseconds(<microseconds>)

delayMicroSeconds(10);

Delay for a number of
microseconds.

digitalWrite(<pinnumber>, [LOW | HIGH]);

digitalWrite(13, LOW);

Set a pin to either low
voltage or high voltage.

for ([<Start value>]; [<end test]; [<change op>])

<statement>;

for 1=0;1<50;i++){...}

For loop. Starts with i equal
to 0, stops when i is equal to
50 and i increases by 1 each
loop.

if (<condition>) <statement>;
else <statement>;

if (1Colour >= 1Limit) 1Colour = 0;
else 1Colour = 1;

Test something and act on
the result.

int analogRead(<pin number>);

iVal = analogRead(0);

digitalWrite(<pinnumber>,
LOW | HIGH);

long random(<uppervalue + 1>);

Paul Chubb

ITarget = random(lLimit);

Provides a pseudo random
number between 0 and

34

<uppervalue>

millis()

IWaited = (long)(millis());

Get the elapsed time in
milliseconds since starting.

pinMode(<pinnumber>, [INPUT | OUTPUT]J);

pinMode(13, OUTPUT);

Set a pin to either send or
receive.

Pointers

pThisDigit->paThisNumber =
&iaNumbers[iOffset][0];

Pointers are used to point to
other things as a way of
manipulating those things.

randomSeed(<seed value>);

randomSeed(analogRead(0));

Sets the random number
generator to be really
random by supplying a seed

Serial.begin(<bitrate>); Serial.begin(9600); Serial.begin starts serial
Serial.print(<string> | <number>); Serial.print(buf); communications from the
Serial.printin(<string> | <number>); Serial.printin(buf); Galileo to the computer.
Serial.print writes the string
back to the computer to the
serial monitor.
Serial.println is the same as
print but includes a carriage
return.
struct <name> '{ ' {<variable>}+ }’; struct DIGIT { A structure that gathers
int *paThisNumber; variables that relate to a
int iDepth; common thing for better
int iBuilding; handling and readability.

int iCurrent;

L

Paul Chubb

35

Appendix: Sketches

Activity 1 Sketch: Blink

Blink

/*
** Title: Blink

ke

Author: Paul Chubb

ke

** Purpose: Make an LED on pin 13 to blink on and off

kek

*/

int iLedPin = 13;
int iWaitTime = 1000; // milliseconds

void setup() {
pinMode(iLedPin, OUTPUT);

}

void loop() {
digitalWrite(iLedPin, HIGH);
delay(iWaitTime);

digitalWrite(iLedPin, LOW);
delay(iWaitTime);

Activity 2 Sketch: RGB Blink

RGB Blink

/*
** Title: RGB Blink

skek

** Author: Paul Chubb

skek

** Purpose: Make an RGB LED blink through its colours
*/

int iRedPin = 3;

int iGreenPin = 5;

int iBluePin = 6;

int iOn = LOW; // High for c-cathode, Low for c-anode
int iOff = HIGH, // Low for c-cathode, High for c-anode
int iDirection = OUTPUT;, // OUTPUT always

int iWaitTime = 1000; // milliseconds

void setup() {

// setu up the pins for action

Paul Chubb 36

pinMode(iRedPin, iDirection);
pinMode(iBluePin, iDirection);
pinMode(iGreenPin, iDirection);

// arduino starts with pin high so may need to switch off the light
digitalWrite(iRedPin,iOff);

digitalWrite(iGreenPin, i0ff);

digital Write(iBluePin, iOff);

}
void loop() {

// Red light
digitalWrite(iRedPin, iOn);
delay(iWaitTime);
digitalWrite(iRedPin,iOff);
delay(iWaitTime);

// Green light
digitalWrite(iGreenPin, iOn);
delay(iWaitTime);

digital Write(iGreenPin, iOff);
delay(iWaitTime);

// Blue light
digitalWrite(iBluePin, iOn);
delay(iWaitTime);
digitalWrite(iBluePin, iOff);
delay(iWaitTime);

Activity 3 Sketch: Counting with Colours

Counting with Colours

/*
** Title: Counting with Colours
sk

** Author: Paul Chubb

ek

** Purpose: use PWM and an addition algorithm that will control the colours of an RGB LED
*/

// Hardware Variables
int iRedPin = 3;

int iGreenPin = 6;

int iBluePin = 5;

int iOn = LOW; // High for c-cathode, Low for c-anode

int iOff = HIGH; // Low for c-cathode, High for c-anode

int iDirection = OUTPUT; // OUTPUT always

// Control Variables

long 1Colour = 0;

byte bStep = 1; // probably work best with 1 or a multiple of 2
int iAnode = -255; // 0 for common cathode, -255 for common anode
int iWaitTime = 10; // milliseconds

Paul Chubb 37

long ILimit = 16777216; // this is the maximum number you need to count to

[
** GetFirstByte()

Rk

** Returns the first byte in a four byte number
*/

byte GetFirstByte(long INumber) {

long IFirstByteMask = 255;

return 1FirstByteMask & INumber;
}

/*
** GetSecondByte()

ke

** Returns the second byte in a four byte number
*/

byte GetSecondByte(long INumber) {

long 1SecondByteMask = 65280;

return (ISecondByteMask & INumber) >> 8;
}

/i
** GetThirdByte()

3k

** Returns the third byte in a four byte number
*/

byte GetThirdByte(long INumber) {

long IThirdByteMask = 16711680;

return (IThirdByteMask & INumber) >> 16;
}

void setup() {

// setup the pins for action
pinMode(iRedPin, iDirection);
pinMode(iBluePin, iDirection);
pinMode(iGreenPin, iDirection);

// arduino starts with pin high so may need to switch off the light
digitalWrite(iRedPin,iOff);

digitalWrite(iGreenPin, i0ff);

digitalWrite(iBluePin, iOff);

}
void loop() {

1Colour += bStep;

if (1Colour >= 1Limit) IColour = 0;

analogWrite(iBluePin, abs(iAnode + GetFirstByte(1Colour)));
analogWrite(iGreenPin, abs(iAnode + GetSecondByte(1Colour)));
analogWrite(iRedPin, abs(iAnode + GetThirdByte(IColour)));
delay(iWaitTime);

Paul Chubb

Activity 4 Sketch: Mood Light

RGB Mood Light

*
** Title: Mood light

Rk

** Author: Paul Chubb

ke

*/

// Hardware Variables
int iRedPin = 3;

int iGreenPin = 6;

int iBluePin = 5;

int iOn = LOW;
int iOff = HIGH;

// Control Variables
long 1Target = 0;

byte bBlueStep = 1;
byte bGreenStep = 1;
byte bRedStep = 1;

int iAnode = -255;

int iWaitTime = 3000;
int iSpeed = 10;

long ILimit = 16777216;
byte bBlue = 0;

byte bGreen = 0;

byte bRed = 0;

byte bBlueTarget = 0;
byte bGreenTarget = 0;
byte bRedTarget = 0;

/*
** GetFirstByte()

skek

*/

int iDirection = OUTPUT;

** Purpose: use PWM, random and fade algorithm to control the colours of an RGB LED

// High for c-cathode, Low for c-anode
// Low for c-cathode, High for c-anode
// OUTPUT always

// blue direction step +ve count up, -ve count down
// green direction step

// red direction step

// 0 for common cathode, -255 for common anode

// milliseconds

// control fade speed - higher = slower

// this is the maximum number you need to count to
// current blue value

// current green value

// current red value

// blue target value

// green target value

// red target value

** Returns the first byte in a four byte number

byte GetFirstByte(long INumber) {
long 1FirstByteMask = 255;

return 1FirstByteMask & INumber;
}

/*
** GetSecondByte()

k%
** Returns the second byte in a four byte number
*/

byte GetSecondByte(long INumber) {

long 1SecondByteMask = 65280;

return (ISecondByteMask & INumber) >> 8;
}

Paul Chubb

39

/%
** GetThirdByte()

ki

** Returns the third byte in a four byte number
*/

byte GetThirdByte(long INumber) {

long IThirdByteMask = 16711680;

return (IThirdByteMask & INumber) >> 16;
}

/*
** SetTarget()

Rk

** Get a random number and setup target control values
ek

*/
void SetTarget() {

// get our target
1Target = random(lLimit);

// set the individual colour targets

bBlueTarget = abs(iAnode + GetFirstByte(ITarget));
bGreenTarget = abs(iAnode + GetSecondByte(ITarget));
bRedTarget = abs(iAnode + GetFirstByte(1Target));

// set the directions
if (bBlue > bBlueTarget) bBlueStep = -1;
else bBlueStep = 1,
if (bGreen > bGreenTarget) bGreenStep = -1;
else bGreenStep = 1,
if (bRed > bRedTarget) bRedStep = -1;
else bRedStep = 1;
}

void setup() {

// setup the pins for action
pinMode(iRedPin, iDirection);
pinMode(iBluePin, iDirection);
pinMode(iGreenPin, iDirection);

// arduino starts with pin high so may need to switch off the light
digitalWrite(iRedPin,iOff);

digitalWrite(iGreenPin, i0ff);

digitalWrite(iBluePin, iOff);

/I set the seed so numbers will be random using noise on an unconnected pin
// set the initial random colour target
randomSeed(analogRead(0));
SetTarget();
}

void loop() {
if ((bBlue == bBlueTarget) && (bGreen == bGreenTarget) && (bRed == bRedTarget)) {

// got to the end colour so show it, wait and choose another
analogWrite(iBluePin, bBlue);

Paul Chubb

40

analogWrite(iGreenPin, bGreen);
analogWrite(iRedPin, bRed);
delay(iWaitTime);
SetTarget();

} else {
// update each colour that isn't there yet
if (bBlue != bBlueTarget) bBlue += bBlueStep;
if (bGreen != bGreenTarget) bGreen += bGreenStep;
if (bRed != bRedTarget) bRed += bRedStep;
analogWrite(iBluePin, bBlue);
analogWrite(iGreenPin, bGreen);
analogWrite(iRedPin, bRed);
delay(iSpeed);

Activity 5 Sketch: RGB Toggle

RGB Toggle

/*
** Title: RGB Toggle
skek

** Author: Paul Chubb

TS

** Purpose: use a push switch to cycle through the colours of an RGB LED
*/

int iSwitch = 13;

int iRedPin = 3;

int iGreenPin = 6;

int iBluePin = 5;

int iCurrentColour = iRedPin;

int iButtonState = HIGH;

int iOn = LOW; // High for c-cathode, Low for c-anode
int iOff = HIGH; // Low for c-cathode, High for c-anode
int iDebounce = 50; // milliseconds to wait for switch to settle

void setup() {

// setup the pins for either input or output
pinMode(iSwitch, INPUT);
pinMode(iRedPin, OUTPUT);
pinMode(iBluePin, OUTPUT);
pinMode(iGreenPin, OUTPUT);

// start with red
digitalWrite(iRedPin, iOn);
digitalWrite(iGreenPin, iOff);
digitalWrite(iBluePin, iOff);

}

void loop() {

// read and debounce the switch

int iPinVal = digitalRead(iSwitch);
delay(iDebounce);

int iPinVal2 = digitalRead(iSwitch);

Paul Chubb

41

// are we in a stable state?
if iPinVal == iPinVal2) {
if (iPinVal != iButtonState) {
if (PinVal == LOW) {
// change colour
digitalWrite(iCurrentColour, iOff);
if (CurrentColour == iRedPin) iCurrentColour = iGreenPin;
else if (iCurrentColour == iGreenPin) iCurrentColour = iBluePin;
else iCurrentColour = iRedPin;
digital Write(iCurrentColour, iOn);
}
iButtonState = iPinVal;
}
}

}

Activity 6 Sketch: Infrared Alarm

Alarm

/¥
** Title: Movement Alarm
ok

Author: Paul Chubb

sk

** Purpose: Using a passive Infrared motion detector, sound when something moves
*/

int iBeepPin = 9;
int iSensorPin = 2;

void setup() {

pinMode(iBeepPin, OUTPUT);
pinMode(iSensorPin, INPUT);
}

void loop() {
int iMovement;

// check the motion sensor

iMovement = digitalRead(iSensorPin);

if (iMovement == HIGH) {
analogWrite(iBeepPin, 20); // Almost any value can be used except 0 and 255
delay(1000); // wait for a delayms ms
analogWrite(iBeepPin, 0); // 0 turns it off

}

Activity 7 Sketch: 4 Digit 7 Segment Display

Seven Seg 4 digit tester

/*
** Title: Seven Seg 4 digit tester

sk

** Author: Paul Chubb

Paul Chubb

42

ek

*/

// segment array - A => G, DP

int iaSegs[] = {0, 2, 4, 6, 7, 1, 3, 5};
int iaDigs[] = {8, 9, 10, 11};

int iSegBound = §;

int iDigBound = 4;

// other vars

int iDigOpen = HIGH;
int iDigClose = LOW;
int iSegOpen = HIGH;
int iSegClose = LOW;
int iWaitTime = 500;

void setup() {
int i;

// set all pins to output
for (i = 0; 1 < iSegBound; i++)
pinMode(iaSegs[i], OUTPUT);

for (i = 0; i < iDigBound; i++)
pinMode(iaDigs[i], OUTPUT);
}

void loop() {
int iDiglnc, iSegInc;

// walk through each digit
for (iDigInc = 0; iDigInc < iDigBound; iDigInc++) {
// switch on this digit
digitalWrite(iaDigs[iDiglnc], iDigOpen);
// walk through each segment
for (iSeglnc = 0; iSegInc < iSegBound; iSeglnc++) {
// switch on this segment and wait
digital Write(iaSegs[iSegInc], iSegOpen);
delay(iWaitTime);
digital Write(iaSegs[iSegInc], iSegClose);
}
digitalWrite(iaDigs[iDigInc], iDigClose);
}

}

Activity 8 Sketch: Marquee

** Purpose: Run through each segment to check that it is working

Marquee

/*
** Title: Marquee
Kk

Author: Paul Chubb
s

*/

// segment array - A => G, DP

Paul Chubb

** Purpose: scroll text and numbers on a 4 digit seven segment display

43

int iaSegs[] = {0, 2, 4, 6,7, 1, 3, 5};
int iaDigs[] = {8, 9, 10, 11 };

int iSegBound = §;

int iDigBound = 4;

// message array

int L = LOW;

int H = HIGH;

int iDisplays = 0;

int iJustRight = 25;

int iMessageBound = 24;
int iMessagelnc = 0;

// USB id for Galileo is 8086:babe
int iaMessage[][8] = {

L LLLLLLTL, /alloff
{L,L,L,L,L,L,L, L}, // all off
L L LLLLL, /alloff
{L,L,L,L,L,L,L, L}, // all off
{L,L,L, L, L, L H L}, //dash
{L,L,L,L,L, L, H, L}, // dash
{L,L,L, L, L, L H L}, /dash
{L,L,L,L,L,L,H,L}, //dash
{L,L,H,H,H, H H L}, /B
(HH HHHLHL, /A
{L,L,H,H,H H H L}, /B
(H,L, L, H HHHL, /E
{L,L,L,L,L,L, H, L}, // dash
LLLLHHLL, /I
(HL,H H L HH L}, /S
L,L, L L LLHL), /dash
(LL H HHHHL), /B
(MM, H,H,H LHL, /A
(H,L L HHHLL, /C

L, L HHHLHL, /0
LL.HLHLHL, /N
{L,L,L,L,L,L,L,H}, /.

L LLLLLLH, /.
{L,L,L,L,L,L,L,H}, /.

X

// other vars

int iDigOpen = HIGH;
int iDigClose = LOW;
int iSegOpen = HIGH;
int iSegClose = LOW;
int iWaitTime = 1;

void setup() {
int i;

// set all pins to output
for (i = 0; i < iSegBound; i++)
pinMode(iaSegs[i], OUTPUT);

for (i = 0; i < iDigBound; i++)
pinMode(iaDigs[i], OUTPUT);

Paul Chubb

void loop() {
int iDiglnc, iLetter, iSeglnc;
// walk through each digit
for (iDigInc = 0; iDiglne < iDigBound; iDigInc++) {
// switch on this digit
digitalWrite(iaDigs[iDigInc], iDigOpen);
// write the letter for this digit
iLetter = iMessagelnc + iDiglnc;
if (iLetter >= iMessageBound) iLetter -= iMessageBound,;
for (iSegInc = 0; iSegInc < iSegBound; iSegInc++) {
// switch on/off each segment
digitalWrite(iaSegs[iSegInc],iaMessage[iLetter][iSegInc]);
delay(iWaitTime);
digitalWrite(iaSegs[iSegInc],iSegClose);
}
digitalWrite(iaDigs[iDigInc], iDigClose);
}
// move to the next letter and wrap
iDisplays++;
if (iDisplays > iJustRight) {
iDisplays = 0;
iMessagelnc++;
if (iMessagelnc >= iMessageBound) iMessagelnc = 0;

}

Activity 9 Sketch: Digital Clock

Digital Clock

/*
** Title: Real Time Clock

ke

** Author: Paul Chubb

Rk

*/

// time commands

int iAsciiZero = 48;

// segment array - A => G, DP

int iaSegs[] = {0, 2, 4, 6, 7, 1, 3, 5};
int iaDigs[] = {8, 9, 10, 11 };

int iSegBound = §;

int iDigBound = 4;

// message array

int L = LOW;

int H = HIGH;

int iaNumbers[][8] = {

** Purpose: Access the embedded linux OS to set then get the time and display on seven segment display

char *cpStartTime = "/bin/date 1114100014"; // use date command to set the date and time numbers:
/MMDDhhmmYY
char *cpRetTime = "/bin/date +%k%M"; // use the date command to get back the current time

Paul Chubb

45

15

// other vars

int iDigOpen = HIGH,
int iDigClose = LOW;
int iSegOpen = HIGH;
int iSegClose = LOW;
int iWaitTime = 1;
have time to light up

void setup() {

// wait one millisec between turning on a seg and off. Without the time it usually doesn't

char *emd = cpStartTime;

char bufl64];
FILE *ptr;
int i;

// start serial comms
Serial.begin(9600);

// set the time

if ((ptr = popen(cmd, "r")) != NULL)

{

while (fgets(buf, 64, ptr) = NULL)

{
Serial.print(buf);
}
}
(void) pclose(ptr);

// set all pins to output

for (i = 0; 1 < iSegBound; i++)
pinMode(iaSegs[i], OUTPUT);

for (i = 0; 1 < iDigBound; i++)
pinMode(iaDigs[i], OUTPUT);

}

void loop()
{

char *cmd = cpRetTime;

char bufl64];
FILE *ptr;

int iDiglnc, iSegInc, iNum,;

// read back the time

if ((ptr = popen(cmd, "r")) != NULL) {
while (fgets(buf, 64, ptr) != NULL) {

Serial.print(buf);
}
}
(void) pclose(ptr);

Paul Chubb

46

// display on leds
for (iDigInc = 0; iDiglnc < iDigBound; iDigInc++) {
// switch on this digit
digitalWrite(iaDigs[iDigInc], iDigOpen);
// write the letter for this digit
// turn ascii character string into numbers by deleting an ascii zero
iNum = bufliDiglnc] - iAsciiZero;
for (iSegInc = 0; iSegInc < iSegBound; iSegInc++) {
/I switch on/off each segment
digitalWrite(iaSegs[iSegInc],iaNumbers[iNum][iSegInc]);
delay(iWaitTime);
digitalWrite(iaSegs[iSegInc],iSegClose);

}

if (iDiglne == 1) {
digitalWrite(iaSegs[iSegBound - 1],iSegOpen);
delay(iWaitTime);
digitalWrite(iaSegs[iSegBound - 1],iSegClose);

}

digitalWrite(iaDigs[iDigInc], iDigClose);

}

}

Activity 10 Sketch: Poker Machine

Poker Machine

J
** Title: Poker Machine
s

** Author: Paul Chubb

ek

** Purpose: using a button, get the Galileo to emulate a poker machine (aka one armed bandit, slot machine)
*/

// pins etc

// segment array - A => G, DP

int iaSegs[] = {0, 2, 4, 6, 7, 1, 3, 5};
int iaDigs[] = {8, 9, 10, 11 };

int iSegBound = 8;

int iDigBound = 4;

int iSwitch = 12;

// message array

int L = LOW;
int H = HIGH;
int iaNumbers[][8] = {
S H,H H H H L,L}, /0
,HL,L, L, L L}, /1
H

T T T
e
s
e
i
e
o

{H

{L,

{H

(H,H,H,H,L, L H L), /3
(L,H,H,L L HHL, /4
(H,L,H,H,L HHL, /5
(H,L,H,H,H,HHL, /6
(H,H,H,L, L L L L, /7
(H,H,H,H,H,H,H,L), /8
(H,H,H,L,L,H,HL}, /9
(L,L,L,L,L, L, L H), /DP

Paul Chubb 47

// other vars

int iDigOpen = HIGH;
int iDigClose = LOW;
int iSegOpen = HIGH,
int iSegClose = LOW;
int iWaitTime = 5;

long 1Debounce = 50;
long IMark = 0;

// state control defines
#define WAITING 0
#define BUILDING 1
#define BUILT 2
#define PRESTART 3
#define MAXSPINS 3
#define STEPS 5

// digit state structs
struct DIGIT {
int *paThisNumber;
int iDepth;
int iBuilding;
int iCurrent;
int iTimesSpun;
int iTimesDisp;
int iDigit;
%

/*
** start()
K3k

Rk

*/

int iSeglnc;

/*
** setup()
ek

ek
*/
void setup() {

int iLastSwVal = HIGH;

// wait one millisec between turning on a seg and off. Without the time it usually doesn't
//have time to light up

// time to wait for switch to debounce

// default value is high

// last time we got a switch change

// spinning my lights before displaying the number
// building from spin to a number

// displaying a number

// just spinning before we start

// max number of spins before number

// control how fast the lights swivel

// template for this number

// where we are up to drawing it

// state: prestart to waiting to building to built to waiting

// current segment to draw when spinning

// times we have spun up to MAXSPINS

// times we have displayed the current image up to steps times
// Which display digit we are

struct DIGIT saDisplay[4];

** initialise the passed digit struct

void start(struct DIGIT *pThisDigit, int iOffset, int iDig) {

pThisDigit->paThisNumber = &iaNumbers[iOffset][0];
pThisDigit->iDepth = 0;

pThisDigit->iBuilding = WAITING;
pThisDigit->iCurrent = 0;

pThisDigit->iTimesSpun = 0;

pThisDigit->iTimesDisp = 0;

pThisDigit->iDigit = iDig;

** initialise the pins, digit structs and the random number generator

Paul Chubb

48

int i;

// set sw pin to input
pinMode(iSwitch, INPUT);

// set all pins to output
for (i = 0; 1 < iSegBound; i++)
pinMode(iaSegs[i],OUTPUT);

for (i = 0; i < iDigBound; i++)
pinMode(iaDigs[i], OUTPUT);

// start the digits;

for (i = 0; 1 < iDigBound; i++) {
start(saDisplay+i,i, 1);
saDisplay[il.iBuilding = PRESTART;

}

// set our random generator with a truly random seed ie the noise on a pin
randomSeed(analogRead(0));
}

/¥
** geramble()
ok

** do the various displays, move through the states etc for the passed digit
*%

*/

void scramble(struct DIGIT *pThisDigit) {

int i;

// wrap the segment value and open this digit for writing and count the spins
if (pThisDigit->iCurrent > iSegBound) {
pThisDigit->iCurrent = 0;
pThisDigit->iTimesSpun++;
}
digitalWrite(iaDigs[pThisDigit->iDigit], iDigOpen);

// if building or built write all segments before the current one

// assert: if built then iDepth will be at the bound

if ((pThisDigit->iBuilding == BUILT) | | (pThisDigit->iBuilding == BUILDING)) {
for (i = 0; 1 < pThisDigit->iDepth; i++) {

digitalWrite(iaSegs[il,pThisDigit->paThisNumberli]);

}
delay(iWaitTime);

}

// check moving to building

if (pThisDigit->iBuilding == WAITING) && (pThisDigit->iTimesSpun >=MAXSPINS)) {
pThisDigit->iBuilding = BUILDING;

}

// write the current one if we aren't built

if (pThisDigit->iBuilding != BUILT) {
digitalWrite(iaSegs[pThisDigit->iCurrent],iSegOpen);
pThisDigit->iTimesDisp++;
delay(iWaitTime);
if (pThisDigit->iTimesDisp > STEPS) {

Paul Chubb 49

// move everything along a step
pThisDigit->iCurrent++;
if (pThisDigit->iBuilding == BUILDING) pThisDigit->iDepth++;
if (pThisDigit->iDepth >= iSegBound) {
pThisDigit->iDepth = iSegBound,;
pThisDigit->iBuilding = BUILT;
}
pThisDigit->iTimesDisp = 0;
}
}

// shutdown and prepare for the next time
for (i = 0; 1 < iSegBound; i++)
digitalWrite(iaSegs[il,iSegClose);

// close this digit
digitalWrite(iaDigs[pThisDigit->iDigit], iDigClose);
}

/*
** Joop()

kek

** debounce our switch and start the run if it is switched, run scramble
ke

*/

void loop() {
int i;

int iSwVal,
long IWaited,;

// only allow switch if we have finished the spin
if ((saDisplay[0].iBuilding == BUILT) | | (saDisplay[0].iBuilding == PRESTART)) {

// check my switch
iSwVal = digitalRead(iSwitch);

// check to see if the button has changed if it has restart the clock
if (iSwVal != iLastSwVal) {

IMark = (long)millis();

iLastSwVal = iSwVal;
}

// only act if we are a real debounced value ie hasn't changed for a while
IWaited = (long)(millis()) - IMark - IDebounce;
if IWaited >= 0) {
// only act if the switch is on
if (iISwVal == LOW) {
// get a random value (0-9) into each digit and ready to start
for (i = 0; 1 < iDigBound; i++)
start(saDisplay+i,random(9), 1);
}
}
}

// spin the dials
for (i = 0; 1 < iDigBound; i++) {
scramble(saDisplay+i);

Paul Chubb

50

Paul Chubb

51

Appendix: Curriculum Map

At time of writing the Australian National Curriculum for Digital Technologies was still in
draft. The following maps use the outcome designators from that draft curriculum. In almost
all cases, the outcome is only partially covered by any one activity. In many cases more of the
outcome can be achieved by requiring standardised development processes around the activities
and additional teaching. Only the outcomes that are covered by the activity are listed.

Year 7 and 8

Curriculum Outcome Relevant Activities

Investigate how data are transmitted and secured in wired, 9
wireless and mobile networks, and how the specifications of
hardware components impact on network activities
(ACTDIK023)

Investigate how digital systems represent text, image and 3,4,6,7,8,9, 10
audio data in binary (ACTDIK024)

Design algorithms represented diagrammatically and in 1,2,3,4,5,6,7,8,9, 10
English, and trace algorithms to predict output for a given
input and to identify errors (ACTDIP029)

Implement and modify programs with user interfaces involving | 1, 2, 3,4, 5,6, 7, 8,9, 10
branching, iteration and functions in a general-purpose
programming language (ACTDIP030)

Plan and manage projects, including tasks, time and other 1,2,3,4,5,6,7,8,9, 10
resources required, considering safety and sustainability

(ACTDIPO033)

Acquire data from a range of sources and evaluate 5,6,10

authenticity, accuracy and timeliness (ACTDIP025)

Define and decompose real-world problems taking into account |1, 2, 3,4,5,6,7,8,9, 10
functional requirements and economic, environmental, social,
technical and usability constraints (ACTDIP027)

Year 9 and 10

Curriculum Outcome Relevant Activities

Design algorithms represented diagrammatically and in 1,2,3,4,5,6,7,8,9, 10
structured English and validate algorithms and programs
through tracing and test cases (ACTDIP040)

Implement modular programs, applying selected algorithms 1,2,3,4,5,6,7,8,9, 10
and data structures including using an object-oriented
programming language (ACTDIP041)

Plan and manage projects using an iterative and collaborative |1,2,3,4,5,6,7,8,9, 10
approach, identifying risks and considering safety and
sustainability (ACTDIP044)

Precisely define and decompose real-world problems, taking 1,2,3,4,5,6,7,8,9, 10
into account functional and non-functional requirements and
including interviewing stakeholders to identify needs
(ACTDIP038)

Paul Chubb 52

Paul Chubb

53

	Using LEDs
	Sketches

	LED Resisters
	RGB LEDs
	Bitwise Operations
	Pulse Width Modulation (PWM)
	Push Buttons
	Pull up and pull down resistors
	Debouncing
	Piezo Buzzers
	7 Segment Displays
	Transistors
	Persistence of Vision
	Pipes, Date and Linux
	Information Storage
	Structures
	Pointers and Pointer Arithmatic
	Finite State Machines
	Pseudo Random Numbers
	Introduction
	Hardware and Software
	Hardware Requirements
	Software Requirements

	Activity 1: Blink
	Schematic
	Software Sketch
	Operations
	Functions

	Activity 2: RGB Blink
	Schematic
	Software Sketch
	Operations
	Functions

	Activity 3: Counting by Colours
	Schematic
	Software Sketch
	Operations
	Functions

	Activity 4: Mood Lamp
	Schematic
	Software Sketch
	Operations
	Functions

	Activity 5: Light Switching
	Schematic
	Software Sketch
	Operations
	Functions

	Activity 6: Infrared Alarm
	Schematic
	Software Sketch
	Operations
	Functions

	Activity 7: LED Display
	Schematic
	Software Sketch
	Operations
	Functions

	Activity 8: Marquee
	Schematic
	Software Sketch
	Operations
	Functions

	Activity 9: Real Time Clock
	Schematic
	Software Sketch
	Operations
	Functions

	Activity 10: Poker Machine
	Schematic
	Software Sketch
	Operations
	Functions

	Appendix: Function List
	Appendix: Sketches
	Activity 1 Sketch: Blink
	Activity 2 Sketch: RGB Blink
	Activity 3 Sketch: Counting with Colours
	Activity 4 Sketch: Mood Light
	Activity 5 Sketch: RGB Toggle
	Activity 6 Sketch: Infrared Alarm
	Activity 7 Sketch: 4 Digit 7 Segment Display
	Activity 8 Sketch: Marquee
	Activity 9 Sketch: Digital Clock
	Activity 10 Sketch: Poker Machine

	Appendix: Curriculum Map
	Year 7 and 8
	Year 9 and 10

